M 6.4 and M 7.1 Ridgecrest, CA Earthquakes

PRELIMINARY VIRTUAL RECONNAISSANCE REPORT (PVRR)

Damaged mobile home in Ridgecrest, CA during the M 6.4 earthquake. Photo by Darla A. Baker / The Californian.

VAST Authors

Lead Author: Khalid M. Mosalam, University of California, Berkeley

Co-Authors (in alphabetical order)
- Veronica Abuchar, Universidad del Norte
- Jorge Archbold, University of California, Berkeley
- Carlos A. Arteta, Universidad del Norte - CEER
- Erica C. Fischer, Oregon State University
- Selim Günay, University of California, Berkeley
- Manny Hakhamaneshi, Caltrans & Cal State East Bay
- Wael M. Hassan, University of Alaska, Anchorage
- Laura Micheli, Iowa State University
- Sifat Muin, University of California, Berkeley
- Cesar Pajaro, Universidad del Norte
- Han Peng, Harbin Institute of Technology
- Renmin Pretell, University of California, Davis
- Ian Robertson, University of Hawaii
- Xavier Vera, GeoEstudios and UCSCG, Ecuador
- Katerina Ziotopoulou, University of California, Davis

VAST Editors (in alphabetical order)
- David Roueche
 Auburn University

Released: July 8, 2019 | NHERI DesignSafe Project ID: PRJ-2444
Executive Summary

A magnitude 6.4 earthquake with a depth of 10.7 km occurred in San Bernardino County, CA on July 4, 2019. The epicenter was located 12 km south west of Searles Valley. On July 5, 2019, a 7.1 magnitude earthquake occurred near the same location and at a depth of 17 km. It is noted that the earthquakes occurred in a fairly remote area in the Mojave Desert region of eastern California. The earthquakes were felt strongly in the China Lake-Ridgecrest area, and more broadly from Los Angeles to Las Vegas. The 6.4 magnitude earthquake was preceded by several foreshocks and followed by hundreds of aftershocks. The maximum Peak Ground Accelerations (PGA) of the 6.4 and 7.1 magnitude earthquakes were 0.38g and 0.48g, respectively. In this report, the PGA residuals are estimated using the ASK14 GMPE in terms of the number of standard deviations with respect to the median model, which correlates to structural response due to earthquake ground motions.

The impact of the two earthquakes on the city of Ridgecrest demonstrated its resiliency as it recovered rapidly where many restaurants and gas stations are back up and running. There was very little structural damage, even from the second stronger earthquake of M 7.1, except for the typically vulnerable buildings (e.g. unreinforced masonry structures and mobile homes). However, there were substantial non-structural and content losses. Fortunately, both earthquakes occurred during a holiday weekend, which meant that schools were not in session and most offices were not operational during the events. If it had not been a holiday and these schools and office spaces would have been fully occupied or the earthquake occurred in a more urban area, fatalities/injuries due to these non-structural damages could have been larger. As a community, we have to be prepared for those scenarios as well. Once again, these two earthquakes have proven the need to improve our regulations when it comes to the design of non-structural components.

Moreover, some utilities for electricity and water distribution suffered from distress. On the other hand, transportation systems and bridges suffered none to minor damage with effective and rapid repair actions.

The other city that was impacted the most is Trona, which did not perform as resilient as Ridgecrest where the city remained dysfunctional up to the time of writing this report. There were more damaged structures, mostly from the effects of ground failure and possibly strong site response related to soft sediments. The town suffered from significant loss of water where its main water pipes fractured due to fault rupture and lateral spreads.

This report overviews the hazard characteristics of the July 4 and 5, 2019 Ridgecrest, California M 6.4 and M 7.1 earthquakes, the regulatory context and emergency response, the impacts of these earthquakes, and current conditions by collocating publicly-reported information. This Preliminary Virtual Reconnaissance Report (P-VRR) represents the first product of StEER’s larger coordinated response to this event, informing and supporting other research teams seeking to learn from this disaster.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>2</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Earthquake Details and Tectonic Summary</td>
<td>6</td>
</tr>
<tr>
<td>Historical Context</td>
<td>7</td>
</tr>
<tr>
<td>Recorded Ground Motions</td>
<td>8</td>
</tr>
<tr>
<td>PGA Residuals</td>
<td>12</td>
</tr>
<tr>
<td>Local Codes and Construction Practices</td>
<td>15</td>
</tr>
<tr>
<td>Federal, State and Local Response</td>
<td>17</td>
</tr>
<tr>
<td>Federal Response</td>
<td>17</td>
</tr>
<tr>
<td>State Response</td>
<td>17</td>
</tr>
<tr>
<td>Local Response</td>
<td>17</td>
</tr>
<tr>
<td>Impacts</td>
<td>19</td>
</tr>
<tr>
<td>Loss of Life and Injuries</td>
<td>19</td>
</tr>
<tr>
<td>Buildings</td>
<td>20</td>
</tr>
<tr>
<td>Critical Facilities</td>
<td>20</td>
</tr>
<tr>
<td>Commercial Construction</td>
<td>20</td>
</tr>
<tr>
<td>Residential Construction</td>
<td>23</td>
</tr>
<tr>
<td>Schools</td>
<td>29</td>
</tr>
<tr>
<td>Instrumented Structures</td>
<td>30</td>
</tr>
<tr>
<td>Fire Following Earthquake</td>
<td>32</td>
</tr>
<tr>
<td>M 6.4 Earthquake - July 4, 2019</td>
<td>32</td>
</tr>
<tr>
<td>M 7.1 Earthquake - July 5, 2019</td>
<td>33</td>
</tr>
<tr>
<td>Lifelines</td>
<td>34</td>
</tr>
<tr>
<td>Transportation Infrastructure and Bridges</td>
<td>34</td>
</tr>
<tr>
<td>Utilities for Electricity and Water Distribution</td>
<td>41</td>
</tr>
<tr>
<td>Non-Structural Damage</td>
<td>43</td>
</tr>
<tr>
<td>Geotechnical Failures</td>
<td>44</td>
</tr>
<tr>
<td>M6.4 Earthquake - July 4, 2019</td>
<td>44</td>
</tr>
<tr>
<td>M7.1 Earthquake - July 5, 2019</td>
<td>46</td>
</tr>
<tr>
<td>Current Conditions, Access Restrictions and Recommendations</td>
<td>51</td>
</tr>
</tbody>
</table>
Introduction

On July 4, 2019 at approximately 10:33 am PDT, a magnitude 6.4 earthquake with a depth of 10.7 km occurred in a remote area of San Bernardino County, CA. The epicenter was located 12 km south west of Searles Valley at coordinates of 35.71°N and 117.51°W. On July 5, 2019 at 8:19 pm, approximately 34 hours after the first earthquake, a 7.1 magnitude earthquake occurred near the same location, with coordinates of 35.77°N 117.61°W. The 7.1 magnitude earthquake had a depth of 17 km. Since the events were not close to urban areas, the damage experienced by buildings and other infrastructure was not extensive. However, this earthquake sequence is quite important as it includes the two largest earthquakes that occurred in Southern California in the past two decades. It provides many opportunities to learn about the following, among several other useful lessons: a) the earthquake sequence characterized by two large magnitude earthquakes one day apart, and relevantly the large magnitude foreshock scenario, b) the performance and impact of the Earthquake Early Warning and ShakeAlertLA systems, c) the expected performance in future earthquakes of pre-1980 non-ductile reinforced concrete buildings, the pre-1980 soft-first story buildings, the water system infrastructure, and the telecommunications infrastructure, which were identified as four areas of seismic vulnerability by the LA Mayoral Seismic Task Force, d) the efficacy of the adopted retrofit techniques in improving structural response, e) the performance of various structures, including school buildings, hospitals, large industrial facilities, regional airports, and mobile homes, f) the significance of non-structural damage, g) the ground motion characteristics, and h) the community resilience in terms of the duration of power outages, mobile phone network access, infrastructure repairs, etc.

StEER further hopes to use this event to exercise protocols, procedures, policies and workflows that StEER will be developing over the next year in collaboration with the wider hazards community including the Natural Hazards Engineering Research Infrastructure (NHERI) and other members of the Extreme Events Reconnaissance Consortium.

The first product of the StEER response to the 2019 Ridgecrest, California Earthquakes is this Preliminary Virtual Reconnaissance Report (PVRR), which is intended to:

1. provide an overview of the hazard characteristics
2. introduce the regulatory and disaster response context for these events
3. summarize the preliminary reports of damage to wide-ranging infrastructure
4. review StEER’s event strategy in response to these earthquakes
5. enhance situational awareness to guide subsequent missions conducted by StEER and the engineering reconnaissance community

It should be emphasized that all results herein are preliminary and based on the rapid assessment of publicly available online data within 3-4 days of these events. Damage assessments discussed herein are based largely on the judgement of the authors without access or with very preliminary and limited access to additional aerial imagery and ground-truthing.
Earthquake Details and Tectonic Summary

On July 4, 2019 at approximately 10:33 am PDT, a magnitude 6.4 earthquake with a depth of 10.7 km occurred in a remote area of San Bernardino County, CA. The epicenter was located 12 km south west of Searles Valley at coordinates of 35.71°N and 117.51°W. On July 5, 2019 at 8:19 pm, approximately 34 hours after the first earthquake, a 7.1 magnitude earthquake occurred near the same location, with coordinates of 35.77°N 117.61°W. The 7.1 magnitude earthquake had a depth of 17 km.

The earthquakes were felt strongly in the China Lake-Ridgecrest area, and more broadly from Los Angeles to Las Vegas. The 6.4 magnitude earthquake was preceded by several foreshocks, and hundreds of aftershocks were detected after the mainshocks. USGS ShakeMap (Figure 1) indicates the maximum Peak Ground Accelerations (PGA) of the 6.4 and 7.1 magnitude earthquakes in the range of 0.2 to 0.3g and 0.7 to 0.8g, respectively. Recorded motions are in a similar range for the 6.4 magnitude earthquake, however for the 7.1 magnitude earthquake, they are on the order of 0.5g, which is less than those predicted by ShakeMap.

Figure 1. Epicenters of the two Ridgecrest earthquakes and Shakemaps [Left: M 6.4 event and right: M 7.1 event] (USGS, 2019a; USGS, 2019b)

Both earthquakes occurred as the result of shallow strike-slip faulting in the crust of the North America plate. According to the focal mechanism solutions, rupture occurred on a steeply dipping fault as the result of either right lateral (RL) slip on a plane striking NW-SE, or as left lateral (LL) slip on a plane striking SW-NE. The earthquakes were located approximately 150 km northeast of the San Andreas Fault - the major plate boundary in the region. At the locations of the earthquakes, the Pacific plate is moving to the northwest with respect to the North America plate at a rate of approximately 48 mm/yr. The location of the earthquakes falls within the Eastern
California shear zone, a region of distributed faulting associated with motion across the Pacific North America plate boundary, and an area of high seismic hazard. More detailed studies will be required to precisely identify the causative fault associated with these events, though seismic activity over the past 2 days has been occurring on two conjugate fault structures in the Airport Lake Fault Zone (USGS, 2019a; USGS, 2019b).

The earthquakes have been followed by numerous aftershocks, the largest of which was a Magnitude 5.4 earthquake 16 hours after the M 6.4 event. Most aftershocks align in a SW-NE trend around the M 6.4 earthquake, though some also align on a NW-SE trend. The M 6.4 event was also preceded by a series of foreshocks over the previous hour, including a magnitude 4.0 event about 30 mins earlier.

Historical Context

This region of eastern California has hosted numerous moderate sized earthquakes. Over the past 40 years, 8 other earthquakes, with magnitudes 5 or larger, have occurred within 50 km of the July 4th, 2019 earthquake. Figure 2 provides a timeline of historical earthquakes in California since 1900. The largest earthquake that took place close to the fault that produced the July 4th and 5th events in the last four decades prior to these two recent events was a magnitude 5.8 event on September 20, 1995, about 13 km to the west-northwest of the July 4th earthquake (USGS, 2019a; USGS, 2019b).

California is a seismically active region that has seen several major earthquakes in recent history. In 1906 The Great San Francisco Earthquake struck the bay area causing great material and human losses. On June 29th, 1925, a M 6.8 earthquake struck in the vicinity of Santa Barbara. As a consequence of this event the Pacific Building Official Conference (currently the International Conference of Building Officials) adopted the Uniform Building Code.

In 1933 the city of Long Beach felt a destructive earthquake, which caused 15 schools in the area to collapse and damaged many more structures. Almost forty years later, in 1971, a M 6.5 earthquake struck the San Fernando Valley. Because of the earthquake, 64 people lost their lives, over 2000 were injured and damage was estimated at $500+ million. The M 6.9 Loma Prieta earthquake on October 17, 1989 led to 63 deaths, 3757 people injured and over $5.6 billion in damage. In 1994, the M 6.7 Northridge earthquake led to 57 deaths, over 8700 people injured and economic losses between $13 and $40 billion.
Figure 2. Timeline of major earthquakes in California in the 20th and 21st centuries

Recorded Ground Motions

For both the M 6.4 and M 7.1 events, ground motions were recorded at several stations. In both cases, the maximum recorded Peak Ground Acceleration (PGA) was recorded at the Christmas Canyon China Lake station (code CCC). For the M 6.4 event, the PGA was 369 cm/s² (0.38g) and Peak Ground Velocity (PGV) was 27 cm/s according to the Center for Engineering Strong Motion Data (CESMD) database. For the M 7.1 event, the recorded PGA was 470 cm/s² (0.48g) and PGV was 55.1 cm/s. Figure 3(a) shows the acceleration time series of the ground motions recorded at the CCC stations for the M 6.4 event and Figure 3(b) shows the same for the M 7.1 event.

Figure 3. Acceleration time histories recorded at the Christmas Canyon China lake (CCC) station from (a) M 6.4 event and (b) M 7.1 event

Figure 4 shows the PGA vs Distance plots for all the recorded ground motions for both events. The plot shows that beyond a distance of 40 km, the PGA values were less than 0.1g for the foreshock but for the main shock even beyond 100 km, PGA greater than 0.1g has been recorded. In general, higher PGAs were recorded for longer distance for the M 7.1 event. This is consistent with the reports of shaking felt throughout the state.

Response spectra (5% damped) of the two horizontal components and the vertical component of the ground motion with the largest PGA, at the Christmas Canyon China Lake station (code CCC), are shown in Figure 5. The highest spectral acceleration for this station is computed to be 1.17g at about 0.48 sec period for the M 6.4 event, Figure 5(a). For the M 7.1 event, Figure 5(b), the maximum spectral acceleration was computed as 1.69g at about 0.11 sec period. Long period effect was observed in the response spectra of the mainshock.
Figure 4. Maximum horizontal ground motion versus distance compared with Boore & Atkinson (2008) Ground Motion Prediction Equation (GMPE) for (a) M 6.4 event and (b) M 7.1 event where distance is fault distance if available, otherwise epicentral distance²

² https://strongmotioncenter.org/graphtest/?qgrid=ci38443183
Figure 5. 5% damped response spectra at the CCC station for the (a) M 6.4 event and (b) M 7.1 event (Source: X. Lu, Tsinghua University & also similar to that reported in the CESMD database\(^3\))

\(^3\) https://strongmotioncenter.org/NCESMD/data/ci38443183/ciccc.gif
PGA Residuals

PGA residuals are estimated using the ASK14 GMPE (Abrahamson et al., 2014), in terms of the number of standard deviations (i.e. epsilon) with respect to the median model. The variable epsilon has been shown to be correlated to structural response for mathematical models subjected to earthquake ground motions (Baker and Cornell, 2008), hence it is deemed appropriate for the purpose of this report. Equation 1 defines the variable epsilon as follows:

$$\varepsilon(T) = \frac{\ln(Sa(T)) - \ln(\mu(T))}{\sigma \ln(T)}$$

where $Sa(T)$ is the measured spectral acceleration at the structural period T, $\mu(T)$ is the median model prediction, and $\sigma \ln(T)$ is the GMPE total standard deviation. Data for PGA was obtained from the USGS event pages (USGS, 2019a; USGS, 2019b). According to Equation 1, positive ε-values indicate that the model underpredicts the observations. Figure 6 shows the relative location of the stations (red markers) with respect to the events epicenters (black stars). For the estimation of the median ground motion prediction model, a $Vs30 = 360$ m/s is selected for this preliminary report. Figure 7 shows the stations superimposed on the slope-based $Vs30$ map of California.

Figure 6. Stations location of the two Ridgecrest earthquakes and Shakemaps for (a) M 6.4 event and (b) M 7.1 event
Figure 8 presents epsilon values versus distance for PGA of the two events. At the closer distance range (e.g., $R \leq 50$ km), the median PGA is estimated by the GMPE without much bias ($|\epsilon(T)| \leq 0.1$) for both event magnitudes. In the distance range $100 \leq R \leq 250$ km, the median recorded PGA is larger than the median model, but with a small bias ($\epsilon(T) \leq 0.8$) for the M 6.4 event. On the other hand, for the M 7.1 event, the median model agrees with the median recorded data. For the larger distance range (e.g., $R \geq 400$ km), the observations are larger than the median model by approximately one standard deviation, which is consistent with the observations in Figure 4.
Figure 8. Epsilon of PGA versus distance, based on the ASK14 ground motion model [Left: M 6.4 event and right: M 7.1 event]
Local Codes and Construction Practices

Design of new buildings in California is based on the California Building Code. One of the notable regulations in Southern California is the LA Non-Ductile Reinforced Concrete Ordinance, which requires mandatory retrofits of reinforced concrete construction. A 4-page brochure developed by the Pacific Earthquake Engineering Research (PEER) Center in Collaboration with California Seismic Safety Commission (CSSC) summarizing, in simplified terms, the expected earthquake performance of buildings designed to the California building code can be found in Appendix A of this report.

The California Building Code has seen distinct improvements after each major earthquake. For example, after the 1971 San Fernando earthquake, seismic detailing was introduced for reinforced concrete members to increase ductility and energy dissipation capacity. Similarly, after the 1989 Loma Prieta and 1994 Northridge earthquakes, there were improvements related to soft-story wood frame buildings and welded steel connections. July 4 and 5 earthquakes also have the potential to lead to changes in the code, such as the consideration of large aftershocks and a variety of earthquake consequences in seismic design and reinforcing the ongoing efforts towards changing the code objectives from life safety to community resilience.

Table 1 provides the distribution of housing units by year of construction in San Bernardino County and the city of Ridgecrest, the most heavily impacted areas. This is based on data from the U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates (Bureau, 2018). Such information adds context to building performance relative to code changes. It can be seen from the table that 47.4% and 53.7% of building stock in San Bernardino County and Ridgecrest City, respectively, was constructed prior to 1980; i.e. about half the building stock lacks seismic details. The percentage of seismically retrofitted structures among this deficient building stock is not currently available.
Table 1. Distribution of housing units by year of construction in San Bernardino County and the city of Ridgecrest (U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates (Bureau, 2018))

<table>
<thead>
<tr>
<th>Time Period</th>
<th>San Bernardino County, CA</th>
<th>Ridgecrest, CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built 2014 or later</td>
<td>0.50%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Built 2010 to 2013</td>
<td>1.50%</td>
<td>1.40%</td>
</tr>
<tr>
<td>Built 2000 to 2009</td>
<td>14.80%</td>
<td>5.90%</td>
</tr>
<tr>
<td>Built 1990 to 1999</td>
<td>13.10%</td>
<td>8.20%</td>
</tr>
<tr>
<td>Built 1980 to 1989</td>
<td>22.80%</td>
<td>30.80%</td>
</tr>
<tr>
<td>Built 1970 to 1979</td>
<td>17.50%</td>
<td>29.40%</td>
</tr>
<tr>
<td>Built 1960 to 1969</td>
<td>10.70%</td>
<td>10.20%</td>
</tr>
<tr>
<td>Built 1950 to 1959</td>
<td>11.50%</td>
<td>10.90%</td>
</tr>
<tr>
<td>Built 1940 to 1949</td>
<td>4.00%</td>
<td>1.60%</td>
</tr>
<tr>
<td>Built 1939 or earlier</td>
<td>3.70%</td>
<td>1.60%</td>
</tr>
<tr>
<td>Total Housing Units</td>
<td>711,900</td>
<td>12,534</td>
</tr>
</tbody>
</table>
Federal, State and Local Response

Post-earthquake responses by federal, state and municipalities, including Ridgecrest, Trona and Los Angeles, are presented below.

Federal Response

United States President Trump tweeted about the 4th of July 2019 California earthquake. His post on Twitter on the same day of the seismic event expressed that the situation seems to be under control. On July 5th, 2019 Federal Emergency Management Agency delivered a tractor-trailer with water bottles to San Bernardino County due to the damage in the water lines.

State Response

- On July 4, 2019 California Governor Gavin Newsom declared a state of emergency for Kern County and expressed that officials are monitoring the aftershocks.
- On July 5, 2019 Gavin Newsom declared a state of emergency for San Bernardino County after the M 7.1 earthquake due to conditions of “extreme peril to the safety of persons and property”.
- Mark Ghilarducci, the Director of the California Governor’s Office of Emergency Services (Cal OES), said that there were no reported deaths or serious injuries.
- The State’s Office of Emergency Services (OES), confirmed that the OES would provide fire and rescue resources to the affected region.

Local Response

- Ridgecrest’s Mayor Peggy Breeden declared a state of emergency. Authorities did not report serious injuries or deaths, but fires, cracked roads, and minor injuries were reported.
- Ridgecrest Regional Hospital was evacuated for evaluation by state inspectors and as a preventive measure due to aftershocks.
- The Red Cross established evacuation centers in Ridgecrest.
- On July 5th 2019, Los Angeles Department of Water declared that qualified personnel were surveying the aqueduct and reservoirs according to their standard earthquake response protocol. Critical facilities were also being inspected. They declared no damages were reported at that time.
- According to the pronouncement of the Chief of San Bernardino County Fire Department,

8 https://www.washingtonpost.com/nation/2019/07/05/aftershocks-rattle-california-after-magnitude-earthquake/?noredirect=on&utm_term=.9c300804d773
9 https://www.washingtonpost.com/nation/2019/07/05/aftershocks-rattle-california-after-magnitude-earthquake/?noredirect=on&utm_term.=cb2f92d75a8c
Bill Villarino, most of Trona suffered minor to moderate damage. Typical damage consisted of collapsed chimneys, mobile homes shaken off their supports and some water main breaks, including two main lines. Villarino stated that there were no injuries\(^\text{12}\).

- After the M 6.4 earthquake, three important cracks formed across State Route 178 near Trona. They were temporarily repaired soon after the seismic event\(^\text{13}\).

Impacts

Loss of Life and Injuries

The PAGER (Prompt Assessment of Global Earthquakes for Response) product of the USGS is an automated system that produces content concerning the estimated impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world (USGS, 2019a & 2019b).

PAGER produces rough estimates of the probability density functions of the number of fatalities and economic losses in U.S. dollars. More specifically, these approximate probability density functions provide estimates of the probabilities of the order of magnitude of the number of fatalities and economic losses by providing probabilities within specific ranges each varying an order of magnitude from the previous one. The number of shaking-related fatalities in this event was projected as relatively low according to the USGS (Figures 9(a) and 10(a)) compared to previous earthquakes with similar magnitude. For both earthquakes, the USGS PAGER tool (Figures 9(b) and 10(b)) estimated no fatalities and 1 to 10 fatalities with probabilities of 65% and 30%, respectively. At the time of the writing of this report, there were no fatalities. For the 6.4 magnitude earthquake, PAGER estimated economic losses due to damage to be between $1 million and $10 million, between $10 million and $100 million, and between $100 million and $1,000 million with probabilities of 27%, 35%, and 21%, respectively. For the 7.1 magnitude earthquake, these probabilities were 23%, 35%, and 25%. Similarity of these two sets of estimates for the two earthquakes despite their significant differences in magnitude is worth exploring. One reason is the low population density in the epicentral region, and the relatively distant location from large urban centers.

PAGER reported that some damage is possible and the impact would be relatively localized. Estimated economic losses are less than 1% of GDP of the United States. Past events with this alert level have required a local or regional level response. It should be noted that these economic loss estimates are characterized by even larger variabilities than those in their estimates of the number of fatalities.

![Figure 9. PAGER Estimated probability of (a) fatalities and (b) economic losses for the July 4th, 2019 Ridgecrest, California Earthquake (USGS, 2019a)](image-url)
Figure 10. PAGER Estimated probability of (a) fatalities and (b) economic losses for the July 5th, 2019 Ridgecrest, California Earthquake (USGS, 2019b)

Buildings

Critical Facilities

Based on most images and reports of damage at Ridgecrest Hospital, it has been evacuated predominantly as a precautionary measure14. “Ridgecrest Regional Hospital was evacuated so an engineer could assess whether it had structural damage,” according to Ridgecrest police Capt. Justin Dampier. According to OSHPD, they inspected the hospital and did not require evacuation. At the time of authoring this report, Kern County Fire Department (KCFD) reported at least 15 patients were moved to the Ridgecrest High School gymnasium due to “structure” damage at the hospital15. Authorities also stated that about 15 patients were moved to other emergency rooms16. Those who were evacuated were sheltering in place under shade awnings and trees, while the 15 emergency room patients were taken to Palmdale-Lancaster area. There was no estimate on how many people in total were evacuated from the hospital17. “There was some structural damage at the hospital, including leaking sprinklers,” a fire battalion chief said at an afternoon news conference. Some reports indicated that a building inspector was examining the damage. The hospital was reported 100% functional again on July 7th.

Commercial Construction

During the two earthquakes, many unsecured objects fell from shelves (Figures 11 to 13). Inside convenience stores aisles were flooded with broken liquor bottles and food items that had fallen off the shelves. There was also light to moderate non-structural component damage, such as collapse of suspended ceilings tiles/grids, concrete, glass and masonry facades, etc. (Figures 14 and 15). As with residential construction covered in the next section, several commercial masonry structures experienced various degrees of damage, Figure 16.

17 https://ktla.com/2019/07/04/ridgecrest-hospital-evacuated-after-magnitude-6-4-earthquake-hits-nearby/
Figure 11. Items knocked from the shelves inside State Bros. Markets in Ridgecrest, California after the M 6.4 event (Source: CNN, 2019)

Figure 12. Books cover the floor at a Kern County Library in Ridgecrest after the 6.4 magnitude event (Credit: Richard Wagner, Source: KTLA, 2019)
Figure 13. Broken bottles and other goods in a store in Lake Isabella after the magnitude 6.4 earthquake\(^8\)

Figure 14. (a) The Daily Independent Newspaper office ceiling damaged during the M 6.4 event (Jessica Watson, AP); (b) Suspended ceiling partial failure at a laundromat in Ridgecrest after the M 6.4 event (Photo by Terry Pierson, The Press-Enterprise/SCNG)

\(^8\) https://www.sfchronicle.com/bayarea/article/6-4 quake hits Mojave Desert felt in Los Angeles-14071924.php#photo-17804993
Residential Construction

At least two residential houses in Ridgecrest caught fire after the M 6.4 event most probably due to broken gas pipes. One house on the corner of Sunland Street and East California Avenue had the garage and part of the main roof burnt by fire (Figure 17a). Another house was heavily damaged by fire, after the M 6.4 event (Figure 17b). Figure 18a shows a collapsed chimney and the upper brick layers that fell from a masonry wall. A house was damaged with diagonal and vertical cracks in exterior walls (Figure 18b). Other buildings with failed chimneys or damaged walls are shown in Figures 19 to 24. Many unreinforced masonry chimney failures were observed in Trona after the M 7.1 event. Preliminary reports cite significant damage in Trona after the M 7.1, pending more information from field teams. Typical damage to timber framed homes is shown in Figure 22, while damage to items in a cafeteria named "My Enchanted Cottage" at 214 W Ridgecrest Blvd Ridgecrest, CA 93555, are shown in Figure 25.
Figure 17. Two houses caught fire in Ridgecrest after the M 6.4 event (San Bernandino Sun, 2019; AP News, 2019)

(a) Collapse of a chimney and upper section of a masonry wall
(b) Cracks in exterior walls
(c) Fire damage after M 7.1 event

Figure 18. Damage to masonry structures (Sources: (a) Reuters, 2019; (b) Yahoo, 2019, and (c) themegaagency, Instagram, 2019)
Figure 19. A cinderblock wall partially destroyed in Ridgecrest following the magnitude 7.1 Earthquake (CNN, 2019)

Figure 20. Damage to a masonry house in Trona after the M 7.1 earthquake (Source: Eytan Wallace via Twitter)
Figure 21. Damage to a masonry houses in Trona after the M 7.1 earthquake (Sources:a) Rob Mcmillan via Twitter, b) CBS Los Angeles)
Figure 22. (a) Damaged house in Trona after the M 7.1 event (credit: Mario Tama, AFP); (b) Damaged walls of a home in Trona (Source: @23ABCNews via Twitter)

Figure 23. Collapsed cinder block walls of a masonry house (Source: Karen Hua via Twitter)
At least two mobile homes were damaged during the M 6.4 event. One is at Trousdale Estates at 210 W. Ward Ave. in Ridgecrest where a woman and her child were inside the building when the earthquake occurred but were unharmed, Figure 26(a). The mobile home appears to have been displaced off its supports, resulting in damage to the skirt surrounding the trailer chassis. Another mobile home also appears to have fallen off its supports resulting in damage to the metal columns supporting the roof over the porch, Figure 26(b). Out of 193 mobile homes in three mobile home parks north of Ridgecrest, eight mobile homes collapsed; none of which were tied down or had seismic braces (Keith Porter from the field.) It appears that most of these collapses were due to the M 7.1 event. According to Jonathan Stewart from the field: there are damaged structures in Trona, in many cases this is from the effects of ground failure. Following the M 7.1 event, Trona seems to be largely abandoned, due to loss of water (it is served by the water pipes ruptured by
fault rupture). Only police and utility personnel present in the area. Unlike Trona, Ridgecrest experienced little structural damage except in especially vulnerable structures, significant content and non-structural damage.

![Image of mobile homes damaged in Ridgecrest area](image)

Figure 26. Damage to mobile homes in Ridgecrest area due to the M 6.4 event (a) Source: Bakersfield News, 2019; (b) Source: Yahoo News, 2019

Schools

At the time of authoring this report, there were no available reports or articles indicating significant damage to local schools. A Fourth of July performance was taking place at Burroughs High School when the M 6.4 earthquake hit, which was documented in a video posted to Twitter (Figure 27, Fox26News, 2019). Since Burroughs High School had back-up generators, they were able to keep the air conditioning operational despite disruption of power elsewhere. Burroughs High School served as a cooling center, allowing people to gather in the gymnasium and stay cool during the day. The American Red Cross later set up an evacuation center at Burroughs High. Ridgecrest High School similarly had individuals temporarily shelter in their gymnasium -- KCFD reported that at least 15 patients from Ridgecrest Regional Hospital were moved there due to potential damage.
Instrumented Structures

Tables 2 and 3 report the recorded peak structural acceleration (PSA) at the instrumented structures in descending order for the M 6.4 and M 7.1 events, respectively. Stations with PSA greater than 0.05g are listed in the tables. The highest peak acceleration (0.29g) was recorded at a 3-story office building at Lancaster for the M 6.4 event. The same building also recorded significant shaking (PSA = 0.326g) during the M 7.1 event. At the time of writing this report, no information on structural or non-structural damage was available for the above mentioned building. Significant shaking has also been recorded for both events at Hwy 395/Brown Road Bridge at Ridgecrest (0.27g for the M 6.4 and 0.6g for the M 7.1 events). Based on preliminary field investigation\(^\text{19}\), no damage was visible from this field assessment after the M 6.4 event. Interestingly, the highest peak structural acceleration for the M 7.1 event was recorded 230 km away from the epicenter at the Port of Long Beach (1.29g). Furthermore, 10 story residential building at Burbank, situated about 180 km away from the epicenter, experienced strong shaking during both events recording 0.22g and 0.30g for M 6.4 and M 7.1 events, respectively.

\(^{19}\) This field investigation was conducted on July 5th, 2019 by Prof. Farzin Zareian, UCI.
Table 2. Peak acceleration recorded at instrumented structures during the M 6.4 event (Source: CESMD database)

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Network</th>
<th>Code</th>
<th>Distance (km)</th>
<th>PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancaster - 3-story Office Bldg.</td>
<td>CGS</td>
<td>24517</td>
<td>127.6</td>
<td>0.291</td>
</tr>
<tr>
<td>Lancaster - 5-story Hospital</td>
<td>CGS</td>
<td>24609</td>
<td>127.6</td>
<td>0.275</td>
</tr>
<tr>
<td>Ridgecrest - Hwy 395/Brown Road Bridge</td>
<td>CGS</td>
<td>33742</td>
<td>28.6</td>
<td>0.274</td>
</tr>
<tr>
<td>Burbank - 10-story Residential Bldg.</td>
<td>CGS</td>
<td>24385</td>
<td>183.8</td>
<td>0.221</td>
</tr>
<tr>
<td>Palmdale - 5-story Hospital</td>
<td>CGS</td>
<td>24457</td>
<td>137.4</td>
<td>0.120</td>
</tr>
<tr>
<td>Redlands - 1-story Warehouse</td>
<td>CGS</td>
<td>23495</td>
<td>183.8</td>
<td>0.074</td>
</tr>
<tr>
<td>San Bernardino - 5-story Hospital</td>
<td>CGS</td>
<td>23634</td>
<td>175.4</td>
<td>0.063</td>
</tr>
<tr>
<td>Los Angeles - 9-story Univ Hospital Bldg.</td>
<td>CGS</td>
<td>24260</td>
<td>193.1</td>
<td>0.062</td>
</tr>
<tr>
<td>San Bernardino - 6-story Hotel</td>
<td>CGS</td>
<td>23287</td>
<td>183.1</td>
<td>0.057</td>
</tr>
<tr>
<td>Los Angeles - 7-story Hospital</td>
<td>CGS</td>
<td>24397</td>
<td>192.2</td>
<td>0.054</td>
</tr>
<tr>
<td>Los Angeles - 52-story Office Bldg.</td>
<td>CGS</td>
<td>24602</td>
<td>196.0</td>
<td>0.053</td>
</tr>
<tr>
<td>Pasadena; Millikan Library</td>
<td>NSMP</td>
<td>5407</td>
<td>183.0</td>
<td>0.052</td>
</tr>
<tr>
<td>Palmdale - Hwy 14/Barrel Springs Bridge</td>
<td>CGS</td>
<td>24706</td>
<td>140.6</td>
<td>0.050</td>
</tr>
<tr>
<td>Riverside - 6-story Hospital</td>
<td>CGS</td>
<td>13633</td>
<td>192.2</td>
<td>0.050</td>
</tr>
</tbody>
</table>
Fire Following Earthquake
M 6.4 Earthquake - July 4, 2019
The M 6.4 earthquake caused two structural fires, a brush fire, and a few vegetation fires. This section will focus on the fires caused in structures. The structural fires occurred in Ridgecrest, CA and in Bakersfield, CA and were reported by the Kern County Fire Department. It is unknown at the time as to the cause of the fires, but multiple gas leaks were also reported after the earthquake. Figure 28(a) shows an active fire in Ridgecrest and Figure 28(b) shows the post-fire.
condition of the house. Figure 29 shows the Bakersfield Fire Department notification of the active fire in Bakersfield after the M 6.4 event.

![Bakersfield Fire Department notification](image)

Figure 28. Fire following M 6.4 event in Ridgecrest (a) active fire conditions (ABC, 2019), and (b) post-fire condition (Source: San Bernardino Sun, 2019)

![Fire following M 6.4 event in Bakersfield](image)

Figure 29. Fire following M 6.4 event in Bakersfield (Source: Bakersfield Fire Department Facebook Page)

Fire departments must respond to all gas leaks with the code of “structural fire.” Therefore, through the Kern County Fire Department (KCFD) incident reporter, these locations can be determined. There were three reports of gas leaks in Bakersfield due to the M 6.4 event. These are shown as structural fires and the exact locations are provided in the Earthquake Engineering Research Institute (EERI) Virtual Earthquake Reconnaissance Team (VERT) report that is included in Appendix B of this report.

M 7.1 Earthquake - July 5, 2019

There were 14 structural fire responses by the KCFD within about 12 hours after the earthquake. While all of these may not be earthquake related, these are mapped below, and exact locations
are provided in the VERT report included in the appendix of this report. A map of the locations of both the M 6.4 and M 7.1 KCFD responses for structural fires are shown in maps in Figure 30 where these locations were concentrated in Bakersfield and Ridgecrest. A link to the Google Map is provided in the VERT report included in Appendix B of this report.

Figure 30. Distribution of structural fire responses by the KCFD after the two earthquakes; purple indicates M 6.4 responses and orange indicates M 7.1 responses, (a) in Bakersfield, and (b) in Ridgecrest

Lifelines

The M 6.4 Ridgecrest earthquake generated minor damage to lifelines, including some cracks on 178 Highway, localized water breaks, and limited damage to the electric infrastructure. The majority of the damage was quickly repaired by the responsible agencies. The areas affected by lifelines damage were the town of Trona and Ridgecrest. The M 7.1 event created more significant damage than the M 6.4 one, generating several cracks on the SR 178 and rockslides.

Transportation Infrastructure and Bridges

A large crack has formed in a highway near Ridgecrest following the earthquake event on July 4, 2019. The road damage included a 12-inch (305 mm) crack across Highway 178, about two miles west of Trona Road. Moreover, several cracks formed on the SR 178 between Trona and Ridgecrest after the M 7.1 event. The roads have been closed for repairs and were quickly repaired by Caltrans crews (KTLA, 2019, Figures 31 to 33). After the M 6.4 event, highways in San Bernardino County remained open. However, after the M 7.1 event, the SR 178 between Trona and Ridgecrest was closed for repairs. No damage to bridges and airports was reported.
Figure 31. Damage reported in Highway 178 (a) Large crack formed near Trona20 (b) a motorcyclist rides over a temporarily repaired part of the damaged highway in Ridgecrest one day after the earthquake, demonstrating the rapid response of repair crews; (c) damage reported in Ridgecrest during the M 6.4 event21; (d) surface cracks near Ridgecrest following the M 6.4 event22 (AP Photo/David McNew) (e) Crack length near Ridgecrest after the July 4th event23; (f) rockslides cause closure of the highway from the M 7.1 event on Friday night; announced clear Saturday at 1 AM by Kern Country24

20 https://ktla.com/2019/07/04/6-6-earthquake-jolts-southern-california-on-4th-of-july/
21 https://www.facebook.com/nextquake/photos/rpp.1522642377960072/2878715709019392/?type=3&theater
22 https://www.reuters.com/article/us-california-quake/big-quake-rattles-area-of-20-million-people-in-california-no-one-killed-idUSKCN1TZ1VB
23 https://www.facebook.com/USGeologicalSurvey/
Figure 32. A road in Trona slightly damaged during M 6.4 event (AP Photo/M. Hartman)

Figure 33. (a) Several cracks on the SR 178 WS between Trona and Ridgecrest after the M 7.1 event. The road was closed for repairs; (b) Details of the cracks; (c) Other picture of the cracks; (d) Rockfall cleared on SR 178 between Trona and Ridgecrest but route still closed for temporary repair

An assessment of the bridges instrumented for strong motion by the California Department of Transportation. Bridge Number 50-0340 at Brown Road, Figure 34(a), was instrumented for

26 https://twitter.com/Caltrans8
strong motion and was triggered by this earthquake, Figure 34(b). It is located about 14 miles from the epicenter of this earthquake. The California Geological Survey (CGS) personnel processed the data and sent it to Caltrans for emergency use. Typically, a default filter of three seconds is used to filter strong motion records, but with the long period energy associated with this earthquake, a 10 second corner period was utilized. The ground sensors show a peak acceleration of 0.24g and the structure recorded 0.60g (refer to Figure 35). The structure experienced long motions of 116 mm transversely and 152 mm longitudinally (refer to Figure 36). Comparing the wave forms from the top and bottom of the column, they show that they move together and should have no relative deflection. Thus, from this preliminary investigation, no cracks are expected of the columns of this bridge.

A structure having a long period of natural vibration (e.g. 6 sec) such as a tall building or large bridge (e.g. Vincent Thomas) would have experienced great motion (harmonic vibration). Since this bridge structure of Brown Road and the local buildings have a high natural frequency of vibration, they basically moved with the ground. If this epicenter was under a large city, many structures would experience greater displacements. It is indeed fortunate that these two big events occurred in a rural area.

Another interesting observation is that the free field vertical spectral acceleration (Sa) is almost 4g at 0.4 seconds (refer to Figure 37). Because of the magnitude of the two events, many ground stations, bridges, buildings and geotechnical downhole arrays were triggered and data is available²⁹.

²⁹ https://strongmotioncenter.org/cgi-bin/CESMD/iqr_dist_DM2.pl?ID=ci38457511
Figure 34. Caltrans Bridge No. 50-340 of Brown Road (a) Photograph of the bridge; (b) Bridge layout and instrumentation by CSMIP
Figure 35. Measured accelerations of Bridge No. 50-340 of Brown Road during M 7.1 event (for Channel numbers, refer to Figure 34(b))
Figure 36. Computed displacement from measured accelerations of Bridge No. 50-340 of Brown Road during M 7.1 event (for Channel numbers, refer to Figure 34(b))
Figure 37. Computed 5% damped spectral accelerations from measured accelerations of Bridge No. 50-340 of Brown Road during M 7.1 event (for Channel numbers, refer to Figure 34(b))

Utilities for Electricity and Water Distribution

Power was knocked out in Trona, Figure 38, a small town closest to the epicenter, located about 25 miles north of Ridgecrest. In addition, residents reported water main breaks and gas line breaks. It was reported that 2,000 customers in Kern County and another 3,000 in San Bernardino and Inyo lost power after the M 7.1 event. Service had been restored quickly. Some water pipes were damaged during the M 6.4 event. Refer to Figures 39 and 40.

30 https://losangeles.cbslocal.com/2019/07/04/6-6m-quake-strikes-near-ridgecrest-in-kern-county/
Figure 38. (a) A utility pole in Trona was damaged during the earthquake32; (b) Workers repair damaged utility lines in Trona, CA (AP Photo/Mario Tama | Getty Images33)

Figure 39. (a) Water spews from pipes in Trona damaged by the M 6.4 event (AP Photo/Matt Hartman34); (b) A crack on Highway 178 seen during fixing a broken water line south of Trona (Source: AP Photo/F.J. BROWN | AFP/GETTY IMAGES35)

32 https://www.chron.com/bayarea/article/6-6-earthquake-southern-California-san-bernardino-14071882.php#photo-17806022
33 https://www.mprnews.org/story/2019/07/05/strongest-earthquake-in-20-years-rattles-southern-california
34 https://www.sfchronicle.com/bayarea/article/6-4-quake-hits-Mojave-Desert-felt-in-Los-Angeles-14071924.php#photo-17806048
35 https://www.wknofm.org/post/64-magnitude-earthquake-hits-southern-california-rattling-large-swath-state
Figure 40. (a) Exploded water pipe reported during the M 6.4 event, consequently forming a crater near Ridgecrest (Source: AP Photo/Etienne Laurent, EPA-EFE); (b) Crews dealing with a water main that ruptured during the earthquake

Non-Structural Damage
This event caused significant damage to non-structural elements such as infill walls, partition walls (usually built of masonry), ceilings and veneers and various types of building contents. In addition to the equipment damage shown with photographs in previous sections, there was damage to suspended ceilings, Figure 41.

Figure 41. Suspended ceiling damage at Baptist Church in Ridgecrest

38 http://www.bpnews.net/53239/calif-quakes-prompt-southern-baptist-response
Geotechnical Failures

M6.4 Earthquake - July 4, 2019

The M 6.4 earthquake caused geotechnical damage in the form of surface fault rupture, ground separation, and ground fissures. An approximately 12” (305 mm) wide crack was formed across Trona Road about 2.5 miles South of State Route 178 (see VERT report included in Appendix B). Another large crack was formed across State Route 178 about 2 miles West of Trona Road. Several other cracks along State Route 178 were reported by the Caltrans District 8 Twitter page; according to the same source these cracks were repaired by the Caltrans District 9 Maintenance crews within an hour after the event. According to the USnews, California Highway Patrol announced that overpasses and underpasses were not damaged and these cracks were primarily in the county roads.

Several traces of fault rupture and ground fissure were also reported near Ridgecrest after the earthquake. Satellite images reflected subtle left-lateral fault rupture after the M 6.4 Ridgecrest earthquake.

Figure 42. Geotechnical damage following M6.4 Ridgecrest (a) 12”(305 mm) wide crack across Trona road, (b) Caltrans District 9 Maintenance crews make repairs to cracks along SR 178 near Trona (Source: Caltrans District 8 Twitter page), and (c) ground separation and offset (photo by Emily Guerin). All images reported in the VERT report, Appendix B.

40 https://twitter.com/Caltrans8
41 https://twitter.com/guerinemily
Figure 43. 100 ft (30.48 m) wide zone of parallel ruptures showing left lateral (LL) and some dilation along the Ridgecrest surface rupture reported by Danielle Verdugo Madugo\(^{42}\)

Figure 44. Surface Fault Rupture following M 6.4 Ridgecrest earthquake (a) Off the road rupture (reported by Emily Guerin\(^{43}\)), (b) Ground crack near Ridgecrest\(^{44}\), (c) fault rupture across Randsburg Wash Road to the south of State Route 178, measured offset of approximately 1.5 feet (457 mm) (Source: Brian Olson Twitter page\(^{45}\)). All images reported in the VERT report, Appendix B.

\(^{42}\) https://twitter.com/DanielleVerdugo
\(^{43}\) https://twitter.com/guerinemily
\(^{44}\) https://www.newsweek.com/california-earthquake-viral-videos-panic-chaos-tremor-aftershock-1447699
\(^{45}\) https://twitter.com/mrbrianolson
M7.1 Earthquake - July 5, 2019

The M 7.1 earthquake caused geotechnical damage in the form of surface fault rupture (e.g. offset, ground fissures etc.), rockfalls, and liquefaction-induced failures (e.g. lateral spreading). A North-West trending fault rupture measured up to 6 feet (1.83 m) of right-lateral offset on the China Lake NWAS base\(^{47}\). A right-lateral offset of about 6.5 feet (1.98 m) and a vertical offset of about 3 feet (0.91 m) were reported\(^{48}\). A surface rupture across State Route 178 caused a right-lateral offset, likely related to the North-West trending conjugate fault\(^{49}\), photo taken from the VERT report, Appendix B. Fault rupture also bended railroad tracks and caused damage to the nearby road; a 3-feet (0.91 m) right lateral offset was reported\(^{50}\).

\(^{46}\) https://twitter.com/ChupikColin/status/1147558794148245504
\(^{47}\) https://twitter.com/mrbrianolson
\(^{48}\) https://twitter.com/mrbrianolson
\(^{49}\) https://twitter.com/mrbrianolson
\(^{50}\) https://twitter.com/neotectonic
Figure 46. (a) Aerial view of the faulted road on the China Lake NWAS base, about 6.5 feet (1.83 m) right lateral (RL) and 3 feet (0.91 m) vertical offset51, (b) North-West trending fault rupture measuring 6 feet (1.83 m) of right-lateral offset on the China Lake NWAS base52, and (c) Bent railroad track due to the fault rupture, close to 3 feet (0.91 m) of RL offset53.

Multiple ground cracks along State Route 178 near Post Mile 8.5 were patched before opening the road to traffic (the duration of closure is now known at this time). According to the Caltrans District 8 Twitter page, Caltrans started permanent construction repairs on State Route 178 approximately six miles east of Ridgecrest. The repairs were done in three separate areas within four mile stretch along the State Route 178. All bridges and highway structures have been evaluated by Caltrans engineers and they have been determined safe for normal operations54.

51 https://twitter.com/mrbrianolson
52 https://twitter.com/mrbrianolson
53 https://twitter.com/neotectonic
54 https://twitter.com/Caltrans8
Figure 47. Aerial views of ground failure indicating left-stepping and right-stepping lateral faults reported by Ian Pierce

Figure 48. Multiple ground cracks along SR 178 (Source: Caltrans8 Twitter page, taken from the VERT report, Appendix B)

55 https://twitter.com/neotectonic
56 https://twitter.com/Caltrans8
Rockfall caused road closure in State Route 178 between Bakersfield and Lake Isabella. This road was later opened to traffic. Rockfall in State Route 178 between Trona and Ridgecrest caused traffic closure; the rockfall was later cleared. Rockfall was also reported from State Route 190 Townes Pass and State Route 127 near the Tecopas Hot Springs turnoff.

Significant geotechnical damage in Trona resulted from at depth liquefaction (Ken Hudson, personal communication) leading to lateral spreading at the surface. Few sand boils were also reported.

57 https://twitter.com/Caltrans8
58 https://twitter.com/Caltrans8
59 https://twitter.com/neotectonic
60 https://www.latimes.com/local/lanow/la-me-trona-earthquake-batters-rockslides-ridgecrest

Figure 49. SR 178 near PM (post mile mark) 8.5 Caltrans crews making repairs to patch road before open to traffic (picture taken 12:53am 07/06/2019)

Figure 50. Rockfall damages in Ridgecrest (left) and Trona (right). All images reported in the VERT report, Appendix B.
observed. Photos below were collected by EERI members performing field investigation after the M7.1 earthquake and shared by Kenneth Hudson (one of the EERI team members). The groundwater table in this area is reported to be fairly shallow (~1.5 ft (457 mm) according to http://wdl.water.ca.gov/waterdatalibrary/ and nearby well data). The combination of heavy rainfall during the past winter with the lakebed could justify these observations as well as the occurrence of liquefaction (Ken Hudson, personal communication).

Figure 51. Liquefaction induced lateral spreading and sand boils causing damage to the roadway, and infrastructure in the Trona area (source for all: courtesy of Kenneth Hudson, one of EERI field investigation team members) [clockwise from top left: Esparza restaurant commercial building distance from – closest distance to Searles Lake 0.6 mile; US Post Office Building – closest distance to Searles Lake 1.0 mile; corner of California Street and Argus Avenue; Shell gas station – closest distance to Searles Lake 1.0 mile].
Current Conditions, Access Restrictions and Recommendations

There have been access restrictions to some hospitals. The Ridgecrest Regional Hospital has now reopened after being closed for a few days after both earthquake events\(^6\). As of this report, the authors are not aware of any unusual access restrictions in place.

Recommendations for further investigation may include the following:

1. Effect of the accumulated damage from the M 6.4 earthquake on the response during the M 7.1 earthquake,
2. Evaluation of the accuracy of regional scale simulations (those of NHERI SimCenter and X. Lu Tsinghua group) by comparing their results against the observed damage,
3. Investigation of the current status of ShakeAlertLA. Does it require revisions, change of thresholds, etc.?
4. Current status of earthquake insurance in California,
5. Reasons behind the relatively poor performance of the water supply network despite the ongoing efforts for its improvement around the Los Angeles area, and
6. Further investigation of performance of non-structural components including mobile homes.

\(^6\) https://twitter.com/FlavioLacayo/status/1148011491984998400?​s=20
StEER Response Strategy

Based on prior event experience and preferences, StEER volunteers are generally offered positions on two types of StEER Teams:

- **Virtual Assessment Structural Teams (VASTs)** were formed to assemble data on the event from public sources and lead authorship of two reports: The Preliminary Virtual Assessment Structural Team (P-VAST) Report and The Early Access Reconnaissance Report (EARR) based on the data from FAST-1. VASTs also work to enrich FAST data with other information gleaned from inventory and high-resolution imagery and participate in quality assurance and data cataloging processes.

- **Field Assessment Structural Teams (FASTs)** were formed by invitations to individuals with prior field experience and expertise relevant to this type of event. FASTs were used to rapidly gather essential data only visible on the ground, with the understanding that these will be enriched with additional sources of data through aligned StEER efforts.

Given the magnitude of the two Ridgecrest earthquakes, StEER deployed the VAST who produced this report. However, the observed limited structural damage discussed in this report does not warrant the need to deploy a FAST at this stage. StEER will continue to monitor the situation and work with local field reconnaissance teams in case the situation changes and necessitates deploying a FAST. In this case a FAST drawn from regional expertise with prior earthquake reconnaissance experience will be sought. Typically, a FAST will gather samples of damage to buildings and other infrastructure using a combination of door-to-door (D2D) damage assessments, unmanned aerial surveys (UASs) and StreetView imagery. VAST will review damage reports and data from FAST as swiftly as possible, as well as other public data from this event, as conducted in this report. This will be used to generate an Early Action Reconnaissance Report (EARR) to be released on DesignSafe. The findings of FAST will then inform subsequent FASTs that may deploy to the affected regions.
Appendix A: Expected Earthquake Performance of Buildings Designed to the California Building Code

EXPECTED EARTHQUAKE PERFORMANCE OF BUILDINGS DESIGNED TO THE CALIFORNIA BUILDING CODE

Earthquakes don’t happen everyday but when they do, there are consequences to families, businesses, and communities!

What is your risk?
How are you impacted after a quake?
How do you want to live after an earthquake?
What can you do to achieve that goal?

62 Brochure developed by Grace Kang of PEER and several co-authors of this report for the CSSC.
EXPECTED CODE PERFORMANCE

The California Building Code is a minimum requirement intended to protect life safety and prevent collapse. It allows damage, which means buildings may not be habitable or functional after a moderate or large earthquake.

THE BUILDING CODE...

HAS LIFE SAFETY INTENT
the building may remain standing so you can evacuate

ALLOWS DAMAGE
you might not be allowed to re-enter a damaged building

IS A MINIMUM REQUIREMENT
you can choose to have your building designed or retrofitted for less damage

EARTHQUAKES & CODE IMPROVEMENTS

1971
SAN FERNANDO
Magnitude 6.5: 64 died, 2,543 injured, $553M damage
Code improvement: Concrete detailing

1989
LOMA PRIETA
Magnitude 6.9: 63 died, 3,757 injured, $5.6-$6B damage
Code improvements: Wood frame soft story issues

1994
NORTHRIDGE
Magnitude 6.7: 57 died, 6,700 injured, $13B-$40B damage
Code improvement: Welded steel frame detailing

EXPECTED PERFORMANCE OF CODE-DESIGNED NEW BUILDINGS IN EARTHQUAKES

<table>
<thead>
<tr>
<th>ESSENTIAL BUILDINGS</th>
<th>Collapse Prevention</th>
<th>Life Safety</th>
<th>Immediate Occupancy</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Shaking</td>
<td>Likely</td>
<td>Likely</td>
<td>Unlikely</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Maximum Considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong Shaking</td>
<td>Likely</td>
<td>Likely</td>
<td>Possibly</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Design Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples: Hospitals,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORDINARY BUILDINGS</th>
<th>Collapse Prevention</th>
<th>Life Safety</th>
<th>Immediate Occupancy</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Shaking</td>
<td>Likely</td>
<td>Possibly</td>
<td>Unlikely</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Maximum Considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong Shaking</td>
<td>Likely</td>
<td>Likely</td>
<td>Unlikely</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Design Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples: Houses, Apartments,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stores, Offices, School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POSSIBLE CONSEQUENCES AND YOUR RISK

<table>
<thead>
<tr>
<th>MYTHS</th>
<th>REALITY & RISKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I occupy a new building, so I will be fine.</td>
<td>The California Building Code establishes a minimum standard intended to protect life safety. Even a new building, following an earthquake, may have damage and be unusable.</td>
</tr>
<tr>
<td>My building was retrofitted last year, so I will be fine.</td>
<td>Most retrofitted buildings are not required to be fully compliant with the current California Building Code. Even a retrofitted building may have damage and be unusable after an earthquake.</td>
</tr>
<tr>
<td>Only buildings that are compliant to current code can be occupied or sold</td>
<td>Even as the California Building Code develops and improves, communities may not be able to require existing buildings to comply with current code.</td>
</tr>
<tr>
<td>My home and workplace are not located next to a fault, so I will be fine.</td>
<td>Different soil and site conditions can result in strong shaking far from faults. In 1989, severe damage and collapses occurred in San Francisco and Oakland, 80 miles away from the epicenter of the Loma Prieta Earthquake.</td>
</tr>
<tr>
<td>I am located in a lower hazard area, so I will be fine.</td>
<td>In lower hazard areas, infrequent earthquakes can still cause strong shaking.</td>
</tr>
<tr>
<td>Damage to the building’s structure is the most costly type of damage in earthquakes.</td>
<td>Most costs are typically from non-structural repairs, replacement of high-value components, and lost revenue from business disruption.</td>
</tr>
<tr>
<td>I cannot afford to mitigate and prepare now.</td>
<td>Bracing and anchoring building contents can be part of regular maintenance efforts. Taking action now can reduce damage and disruption later.</td>
</tr>
</tbody>
</table>

EARTHQUAKE HAZARD IN CALIFORNIA

![California Earthquake Hazard Map](image)

Life Safety Level of Damage for an Ordinary Building after a Large Earthquake

CONSEQUENCES

FAMILY
- injury from falling items
- expensive repairs
- isolation and stress
- displacement

BUSINESS
- loss of inventory
- supply chain broken
- loss of income
- relocation

COMMUNITY
- limited supplies & services
- emergency services overloaded
- fragmentation
THINGS YOU CAN DO

Preparedness will determine the quality of life in the weeks and months that follow a major earthquake.

FAMILY

- Secure your space: brace and restrain heavy and important items such as water heaters and bookcases.
- In addition to a short-term emergency and communication plan, develop a longer-term recovery plan that includes personal and financial security.
- Assess age and earthquake safety of home. Consider retrofitting measures including chimney bracing.

RESOURCES

- California Earthquake Authority – Residential Earthquake Insurance and Mitigation
 https://www.earthquakeauthority.com
- “Homeowner’s Guide to Earthquake Safety”
 https://ssc.ca.gov/forms/bgs/hog.html
- “Staying Safe Where the Earth Shakes”
 https://www.earthquakecountry.org/stayingsafe/
- “MyHazards” Online Tool: Risks and Recommended Actions
 http://myhazards.caloes.ca.gov/

BUSINESS

- Develop a short-term emergency plan as well as a longer-term continuity and recovery plan that includes employees, inventory, and financial security.
- Incorporate equipment and inventory restraint with operational maintenance plans.
- Confer with experts to identify risks and how to maintain operational functions by designing beyond the minimum code level.

RESOURCES

- California Resilient Business Challenge
- “Commercial Property Owner’s Guide to Earthquake Safety”
 https://ssc.ca.gov/forms/bgs/cog.html
- “7 Steps to an Earthquake Resilient Business”

COMMUNITY

- Engage, inform, and train neighborhoods about mitigating the consequences of major earthquakes, including short-term emergency response and longer-term recovery measures.
- Determine which facilities are at risk and their impact on the public.
- For each public building, define its post-earthquake role in the community, complete a structural and non-structural assessment, and implement needed upgrades.

RESOURCES

- Federal Emergency Management Agency (FEMA) Earthquake Publications
 https://www.fema.gov/earthquake-publications
- “Natural Hazard Mitigation Saves - 2018 Interim Report” and Fact Sheets
 https://www.nibs.org/page/mitigation saves
Appendix B: EERI VERT Report

Virtual Earthquake Reconnaissance Team (VERT): Phase 1 Response to M6.4 & M7.1 Searles Valley Earthquakes
07/04 & 07/05/2019

By: Mohammad Shahidi Ham, Ifananda Mavh, Christi Howatt, Susan Dereshiwsky, Wilma Cider, Yasa Faezhi, William Cooper, Dominique Gauvin, Skip Bacigalupi, Namee Elaharti, Mary E. Jean, Jennifer Small, Ezzat M. Kasa, Stanislav Houshal, Xiaowei Wang, Sherif W. Mirza, Lecie E. Stoecker, Yi-Ting Tsai, Michael Zobitz, Jocelyn Wing, Louis Long, Katie Lee, Zahiya Zaidi, and Mary E. Jean.

For questions contact VERT coordinators:
- Emily Pecher (v-unicos@gmail.com)
- Nancy Rustemaru (nrustemaru@usgs.gov)

PVRR: Preliminary Virtual Reconnaissance Report
Building Resilience through Reconnaissance

Topic: Earthquake Characteristics
VERT Phase 1 Response for Searles Valley M6.4 & M7.1 Earthquakes

Earthquake Characteristics
M6.4 Earthquake

- Date: 07-04-2019, 19:35:43 (PT)
- Magnitude: 6.4 ± 0.1
- Location:
 - 115 miles from Los Angeles
 - 137.95°W and 35.75°N
- Depth: 27 km
- Observed intensity:
 - Severe shaking
 - MDHA damage:

Fault Mechanism:
- The earthquake resulted from shallow strike-slip faulting in the north part of the North America plate.
- The fault is a right-lateral strike-slip fault, with strike N100°E, dip 70°N, and trend 80°W.
- Possible fault movements are NE-SW and E-W, with a strike-slip component.
- Rupture area extended from the NE fault zone to the N fault zone.

Summary of Location, Fatalities, Fault Mechanism, and other Statistical Data
M6.4 Earthquake

Conjugate Fault Categories:

- [Diagram]

Summary of Location, Fatalities, Fault Mechanism, and other Statistical Data
M6.4 Earthquake

USGS Shaking Map
- Updated 2019-07-06 13:58:21
- PGA vs. Fault Distance

[Map]
Summary of Location, Fatalities, Fault Mechanism, and other Statistical Data
M6.4 Earthquake

Impact on human safety:
- A fatality reported on July 5, 2019 [2]
- Unknown number of injuries reported as of July 6, 2019, primarily from fallen glass [3]

Impact on society:
- 1 house fire with $10K damage [5]
- $100 million to $300 million worth of estimated damage [5]

Summary of Location, Fatalities, Fault Mechanism, and other Statistical Data
M7.1 Earthquake

Date: 07-06-2019, 15:52 UTC
Magnitude: Mw 7.1

Location:
- Epicenter located 10.6 miles from Ridgecrest
 - 35.750°N, 119.928°W
- Depth: 1.1 miles
- Vertical displacements of up to 12 ft and lateral displacements of up to 4 ft (measured by reconnaissance team)

References
7. FEMA Federal Emergency Management Agency

Summary of Aftershocks
M6.4 Searles Valley Earthquake

- According to the USGS forecast issued 07/06/2019 06:13 UTC, the chance of more aftershocks, estimate as follows: Within the next 3 weeks until 2019-07-12 00:00 (UTC)
- The chance of an earthquake of magnitude 3 or higher is ~19%, and it is most likely that as few as at least 3 earthquakes may occur.
- The chance of an earthquake of magnitude 4 or higher is ~8%, and it is most likely that as few as at least 1 such earthquakes may occur.
- The chance of an earthquake of magnitude 5 or higher is ~5%, and it is most likely that as few as at least 1 such earthquakes may occur.
- The chance of an earthquake of magnitude 6 or higher is ~1%, and it is possible but with a low probability [3]

Topic: Aftershocks
VERT Phase Response for:
Searles Valley M6.4 & M7.1 Earthquakes
Summary of Aftershocks
M6.4 Searles Valley Earthquake

- As of 07/05/2019 06:22 UTC, there have been 76 magnitude 3 or higher earthquakes, which are strong enough to be felt, and 3 magnitude 4 or higher earthquakes, which are large enough to do damage. [1]

- According to our USGS forecast, over the next 3 weeks there is a 5% chance of one or more aftershocks that are larger than magnitude 4. This likely means that there will be smaller earthquakes over the next three weeks, with the largest magnitude 3 or higher aftershocks. [1]
Summary of Aftershocks
M7.1 Earthquake

According to the USGS forecast issued 2018-07-06 03:05:12 (UTC) over the next 1 week there is a 3% chance of one or more aftershocks that are larger than magnitude 7.1. It is likely that there will be smaller earthquakes over the next 1 week, with M4.1 to 4.8 magnitude or higher. Aftershocks Magnitude 3 and above are large enough to be felt near the epicenter. The number of aftershocks will drop off over time, but a large aftershock can increase the numbers again, temporarily.

Summary of Aftershocks
M7.1 Earthquake

The USGS estimates the chance of more aftershocks as follows: Within the next 1 week until 2018-07-13 11:06:00 (UTC):
- The chance of an earthquake of magnitude 2 or higher is >99%, and it is most likely that as few as 146 or as many as 439 such earthquakes may occur in the case that the sequence is un-inaugurated by larger aftershock.
- The chance of an earthquake of magnitude 4 or higher is >96%, and it is most likely that as few as 0 or as many as 6 such earthquakes may occur.
- The chance of an earthquake of magnitude 6 or higher is >27%, and it is most likely that as few as 0 or as many as 2 such earthquakes may occur.
- The chance of an earthquake of magnitude 7 or higher is >3%, such an earthquake is possible but with a low probability.

Summary of Aftershocks
M7.1 Earthquake

The probability of at least one aftershock of at least magnitude M within the given time frame, forecast starting 2018-07-06 03:05:12 UTC. (1)

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>1 Day</th>
<th>1 Week</th>
<th>1 Month</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 3</td>
<td>>99%</td>
<td>>99%</td>
<td>>99%</td>
<td>>99%</td>
</tr>
<tr>
<td>M = 4</td>
<td>71%</td>
<td>80%</td>
<td>89%</td>
<td>94%</td>
</tr>
<tr>
<td>M = 5</td>
<td>12%</td>
<td>21%</td>
<td>40%</td>
<td>58%</td>
</tr>
<tr>
<td>M = 6</td>
<td>1%</td>
<td>3%</td>
<td>5%</td>
<td>9%</td>
</tr>
</tbody>
</table>

* Earthquake possible but with a low probability.

Summary of Aftershocks
M7.1 Earthquake

The likely number of aftershocks of at least magnitude M within the given time frame, forecast starting 2018-07-06 03:05:12 UTC. (2)

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>1 Day</th>
<th>1 Week</th>
<th>1 Month</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 3</td>
<td>35 to 70</td>
<td>37 to 120</td>
<td>39 to 190</td>
<td>40 to 200</td>
</tr>
<tr>
<td>M = 4</td>
<td>3 to 6</td>
<td>3 to 12</td>
<td>3 to 15</td>
<td>4 to 18</td>
</tr>
<tr>
<td>M = 5</td>
<td>1 to 3</td>
<td>1 to 6</td>
<td>1 to 9</td>
<td>3 to 4</td>
</tr>
<tr>
<td>M = 6</td>
<td>1 to 4</td>
<td>1 to 7</td>
<td>1 to 10</td>
<td>1 to 13</td>
</tr>
<tr>
<td>M = 7</td>
<td>1 to 5</td>
<td>1 to 9</td>
<td>1 to 14</td>
<td>1 to 19</td>
</tr>
</tbody>
</table>

References

Topic: Hospitals
VERT Phase 1 Response for: Searles Valley M6.4 & M7.1 Earthquakes
Summary of Hospitals

Ridgecrest Regional Hospital (RRH)
July 4, 2019
- 15 patients evacuated to be cautious [2]
- 6 patients transferred to other hospitals while engineers repaired broken pipes [3]. At least five patients were reported killed by week 3 [4]
- Patients sent to two hospitals (Bakersfield, Lancaster, Palmdale) [5]
- Hospital open with two hospitals [5]
- Evacuation center opened [5]
- No structural damage to hospital [6]
- No one was in surgery at the time of the quake [6]

Summary of Hospitals

Ridgecrest Regional Hospital (RRH)
July 5, 2019
- Due to aftershocks, Ridgecrest Regional Hospital is only providing ER services to those in need; all other patients have been transferred out of the hospital [4]
- OTHPO inspected hospital and gave no warning to the hospital. There was a water leak that caused closure of the hospital [reported by ERI/ERI Clearinghouse].
- Emergency rooms remain closed, but the emergency department is open for triage of all patients [5]
- Hospital is encouraging everyone in active labor to go to the hospital for delivery. They note that they have OBs and nurses on site and are comfortably set up for natural and c-section delivery [5]
- OTHPO remains on site and has not yet ruled out further notice. Urgent Care, Lab, Radiology, Dental, Rehab/Physical Therapy, Medical Records/Health Information Management (HIM), CIP with the exception of patients scheduled for minor procedures and who have been notified [5]

Summary of Hospitals

Ridgecrest Regional Hospital (RRH)
July 6, 2019
- ERB suffered more damage to the main structure [5]
- Hospital will close, with the exception of the ER, labor and delivery [5]
- Clinic expected to be open on Monday and full reopening of the hospital this week [5]

July 7, 2019: RRH resumes normal operations (reported on ERI Clearinghouse)

References
2. https://www.othpo.org/RIDGECREST%20earthquake%20hospital%20evacuated%20after%20earthquake%20in%20Baja/33/5

Topic: Other building damage

VERT Phase 1 Response for: Searles Valley M6.4 & M7.1 Earthquakes

Summary of other building damage

M6.4 Searles Valley Earthquake

- San Bernardino Fire Department reports there are multiple buildings with minor cracks [5]
- House fires reported in Ridgecrest [5]
- Damage to some mobile homes [5]

Vertigo Picadillo home (a) Al Fawaz / AP (2019); And (b) James Quigg / AP (2019)
Summary of other building damage
M6.4 Searles Valley Earthquake

- Reports of yellow tagged mobile home in Ridgecrest that shifted on its foundation, as well as red tagged mobile home in Tulelake Estates, Ridgecrest [5]
- Reports of collapsed fireplace, fallen ceilings, shattered windows in front of Trona [3]
- Ridgecrest home “practically collapse upon itself” [5]
- Damage to Naval Air Weapons Station China Lake [5]
Summary of other building damage
M7.1 Searles Valley Earthquake

References
1. [Link 1]
2. [Link 2]
3. [Link 3]
4. [Link 4]
5. [Link 5]
6. [Link 6]
7. [Link 7]
8. [Link 8]
9. [Link 9]
10. [Link 10]
11. [Link 11]
12. [Link 12]
13. [Link 13]

Topic #7: Geotechnical Damage

VERT Phase 1 Response for:
Searles Valley M6.4 & M7.1 Earthquakes

Summary of Geotechnical Damage
M6.4 Searles Valley Earthquake
Summary of Geotechnical Damage
M6.4 Searles Valley Earthquake

- The San Bernardino County Fire Department reported that roads underwent varying degrees of damage [1].
- California Highway Patrol St. John Williams says officials have found cracks on several roads in the county, but encryption and underground are in good shape [2].

Summary of Geotechnical Damage
M6.4 Searles Valley Earthquake

- Damage to Highway 15 near Ridgecrest, CA. [4]
- Damage to Highway 15 near Ridgecrest, CA. [4]
- Damage to California 157 near Ridgecrest, CA. [3]
- Damage to California 157 near Ridgecrest, CA. [3]

Summary of Geotechnical Damage
M7.1 Earthquake

- Damage to California 157 near Ridgecrest, CA. [3]
- Damage to California 157 near Ridgecrest, CA. [3]

PVRR: Preliminary Virtual Reconnaissance Report
Building Resilience through Reconnaissance
Summary of Geotechnical Damage

M7.1 Earthquake

Fault Rupture Offset:
CSS Emergency Response [18]

Surface Rupture

Twitter [18]

Summary of Geotechnical Damage

M7.1 Earthquake

Geophysical Imaging surveys and interpreted maps of the M7.4 2010 northern Japan earthquake, reflecting subduction zone complex. (CSS available at the link [18]).

Twitter [18], more surface rupture

Summary of Geotechnical Damage

M7.1 Earthquake

Landslide boundary and internal collapse:
CSS Emergency Response [18].

Twitter [18]
Lifelines
M6.4 Searles Valley Earthquake

- Town of Trona [2]
- Power outage
- Water outage
- San Bernardino [2 & 4]
- Power main break
- Downed power lines were reported, and a massive house fire was captured on cell phone video (possible gas line break).
- July 5
- Town of Trona [4]
- Power restored, still no gas and water

Lifelines
M6.4 Searles Valley Earthquake

- Southern California Edison warning on power outages throughout Southern CA. Tracking outages through website.

Lifelines
M6.4 Searles Valley Earthquake

- Utility pole damage [9]

Overview & how it affected various regions
M6.4 Searles Valley Earthquake

<table>
<thead>
<tr>
<th>Lifeline</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power</td>
<td>1,800 people without power in Trona [2]</td>
</tr>
<tr>
<td>Gas</td>
<td>5 gas line breaks reported [2]</td>
</tr>
<tr>
<td>Water</td>
<td>Water main break in San Bernardino county</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>Power out in Trona Co.</td>
</tr>
<tr>
<td>Oil</td>
<td>N/A</td>
</tr>
<tr>
<td>Airport</td>
<td>No damage to airports</td>
</tr>
<tr>
<td>Public Transit</td>
<td>MetroLink shut down for inspections, resumed normal operations afterwards [11]</td>
</tr>
</tbody>
</table>

After M7.1 Earthquake

- About 3000 people lost power in Ridgecrest after the earthquake, but most of it recovered by July 6/7.
- More damage (Pico, Mesquite, Salton Sea) than in the previous earthquake, reported by the San Bernardino County Fire [7].
- In Trona, there were intermittent blackouts and disrupted water service. A boil water order was in place [9].
- Local power outage in Evora/Valley Glen affecting around 3000 customers [9].

References
References

http://www.example.com/reports/reconnaissance_report

Topic: Transportation Networks (including roads)

VERT Phase 1 Response for: Searles Valley M6.4 & M7.1 Earthquakes

Overview of Transportation Networks M6.4 Earthquake

- Crash in road was observed (see photo right), and carnage remained undamaged
- Motorists were temporarily halted
- Several vehicles fell off a hill
- No damage reported at LAX. All trains proceeded to reports of damage for the Inland or Torrance airports.

Overview of Transportation Networks M7.1 Earthquake

- Road closures affecting emergency response - many roads were damaged: public access roads from the south is closed (22:14 h)
- Caltrans reports major canopy state route closed due to rock slide near San Benito, CA
- SR 119, 110, 101, and 80 are still closed
- SR 119 remains closed from SR 119 to SR 127 near the Topa Topa Springs turnoff. The public is advised to continue to avoid travel through the area.
- A 6.5-foot wide roadway was reported in the roadway near Highway 136 and South Main Road in
- Overview of Transportation Networks M7.1 Earthquake

Major road closures M7.1 Earthquake

The California Transportation Agency said all roads have been reopened and roads are now open: July 6, 7.88 am

Overview of Transportation Networks M7.1 Earthquake

Superseded by new 119
SK 119 closed due to rock slide
Earthquake damage at Torrance Rd.

PVRR: Preliminary Virtual Reconnaissance Report
Building Resilience through Reconnaissance
References

1. https://www.ethics.org/20595/Missouri/earthquake-after-effects.html

Summary of Business Impacts

M6.4 Earthquake

- Displaced individuals were temporarily closed for inspection. Roles are back up and running by 5:30 p.m. on 11/19.
- Walmart in Sandy - Humboldt was closed. This was used as a location to hand out water and snacks to those without electricity.
- Eastside Clipper was closed. Lost thousands of dollars of merchandise.

Summary of Business Impacts

M6.4 Earthquake

- Damage at Eastside Market
- Thirsty Well ceiling damage
- Water bottle in refrigerator

Summary of Business Impacts

M6.4 Earthquake

- Damage at McCarran Airport
- Restaurant fire at Food Court
-
Summary of Business Impacts
M6.4 Earthquake

Following the M6.4 earthquake on Friday, the business impacts are outlined below:

Emergency Response
M6.4 Searles Valley Earthquake

- Kern County Fire Chief David Whis says emergency crews are also dealing with small vegetation fires, cracks in some roads and gas leaks that were reported after the quake [5].
- The Kern County Fire Department says it is sending search and rescue teams to the town of 13,800 people [4].
- Pets had to be rescued from Soda & Paws Animal Rescue in Ridgecrest. They were evacuated to Maricopa Animal Care.
- Little Caesars in Ridgecrest was handing out free pizzas to those affected by the earthquake.
Emergency Response
M6.4 Searles Valley Earthquake

Relief efforts at these locations in Inyo County [2]

Citation has approved $15 million. Senator’s order for emergency repair in ININ

Emergency Response

Red Cross assistance for those affected by the earthquake [from Instagram]

Utah Governor sending aid to those affected by the earthquake [from Instagram]

Emergency Response

Movement of resources to Red Cross sites [6]

Evacuation Response [7]

Emergency Response

Inyo County Fire Dept. Search and Rescue [8]

Emergency Response

References

Topic: Post-earthquake fires

VERT Phase 1 Response for: Searles Valley M6.4 & M7.1 Earthquakes

All locations shown in: https://drive.google.com/open?id=1x1JkWZBi
H4d43Q9bPfPb4VxGrCf4S&usp=sharing

PVRR: Preliminary Virtual Reconnaissance Report
Building A esilience through Reconnaissance

72
Post-earthquake fires
M6.4 Searles Valley Earthquake

July 5, 2019
Press reports mentioned five fires following the earthquake, for example ABC quoted “Ridgecrest Mayor Peggy Breeden says firefighters are working to put out five fires in the area following an earthquake...”
https://abc7.com/fires-break-out-after-magnitude-6.4-earthquake/4087817/

July 6, 2019
Kern County radio reported “Fire in a house after earthquake in Ridgecrest...”
Fires are contributing to the cost of the reinsurance bond in Ridgecrest.

Some other documented reports of any kind, each of which requires a structural fire response that is achievable.

Structure Fires reported by Kern County Fire Dept., (7/5)
M6.4 Searles Valley Earthquake

http://www.kerncountyfire.org/pressrelease/pressreleases.php

http://kerncountyfire.org/pressrelease/pressreleases.php

Post-earthquake fires (7/4)
M6.4 Searles Valley Earthquake

http://kerncountyfire.org/pressrelease/pressreleases.php

http://kerncountyfire.org/pressrelease/pressreleases.php
PVRR: Preliminary Virtual Reconnaissance Report
Building Resilience through Reconnaissance
References

The following sources were consulted in the authorship of this report:

Acknowledgements

StEER gratefully acknowledges the financial support of the National Science Foundation under Award CMMI-1841667, with deep appreciation for the mentorship provided by Dr. Joy Pauschke. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

StEER team appreciates the collaboration with the Earthquake Engineering Research Institute (EERI) and its Virtual Earthquake Reconnaissance Team (VERT). We thank Professor X. Lu, Tsinghua University, and his research group for the technical assistance on the response spectra shown in Figure 5 of this report. We also thank Professors J. Stewart, UCLA, and his GEER team and F. Zareian, UCI, for sharing their first-hand preliminary field observations.

The discussion about the performance of Bridge Number 50-0340 instrumented by CGS has been shared by Mr. Pat Hipley, Office of Earthquake Engineering, Caltrans. The authors acknowledge Mr. Hipley for his contributions of this discussion and also of Figures 34 to 37.

The sharing of videos, damage reports and briefings via DesignSafe-CI’s Slack channel was tremendously helpful and much appreciated. These collaborations and exchanges of critical data in the landfall stages benefited greatly from the work of the DesignSafe CI team who continuously supported and responded to StEER’s emerging needs.
About StEER

The National Science Foundation (NSF) awarded a 2-year EAGER grant (CMMI 1841667) to a consortium of universities to form the Structural Extreme Events Reconnaissance (StEER) Network. StEER’s mission is to deepen the structural natural hazards engineering (NHE) community’s capacity for reliable post-event reconnaissance by: (1) promoting community-driven standards, best practices, and training for RAPID field work; (2) coordinating official event responses in collaboration with other stakeholders and reconnaissance groups; and (3) representing structural engineering within the wider extreme events reconnaissance (EER) consortium in geotechnical engineering (GEER) and social sciences (SSEER) to foster greater potentials for truly interdisciplinary reconnaissance. StEER also works closely with the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) RAPID facility and cyberinfrastructure Reconnaissance Portal to more effectively leverage these resources to benefit StEER missions.

StEER relies upon the engagement of the broad NHE community, including creating institutional linkages with dedicated liaisons to existing post-event communities and partnerships with other key stakeholders. While the network currently consists of the three primary nodes located at the University of Notre Dame (Coordinating Node), University of Florida (Atlantic/Gulf Regional Node), and University of California, Berkeley (Pacific Regional Node), StEER aspires to build a network of regional nodes worldwide to enable swift and high quality responses to major disasters globally.

StEER’s founding organizational structure includes a governance layer comprised of core leadership with Associate Directors for the two primary hazards as well as cross-cutting areas of Assessment Technologies and Data Standards, led by the following individuals:

- **Tracy Kijewski-Correa (PI),** University of Notre Dame, serves as StEER Director responsible with overseeing the design and operationalization of the network.
- **Khalid Mosalam (co-PI),** University of California, Berkeley, serves as StEER Associate Director for Seismic Hazards, leading StEER’s Pacific Regional node and serving as primary liaison to the Earthquake Engineering community.
- **David O. Prevatt (co-PI),** University of Florida, serves as StEER Associate Director for Wind Hazards, leading StEER’s Atlantic/Gulf Regional node and serving as primary liaison to the Wind Engineering community.
- **Ian Robertson (co-PI),** University of Hawai’i at Manoa, serves as StEER Associate Director for Assessment Technologies, guiding StEER’s development of a robust approach to damage assessment across the hazards.
- **David Roueche (co-PI),** Auburn University, serves as StEER Associate Director for Data Standards, ensuring StEER processes deliver reliable and standardized reconnaissance data.

StEER’s response to the 2019 Ridgecrest Earthquakes preceded the formation of its official policies, protocols and membership, which are still in active development. All policies, procedures and protocols described in this report should be considered preliminary and will be refined with community input as part of StEER’s operationalization in 2019.
StEER Event Report Library

Roueche, David; Davis, Brett; Hodges, Courtney; Rittelmeyer, Brandon; Turner, Kelly; Kijewski-Correa, Tracy; Prevatt, David; Robertson, Ian; Mosalam, Khalid (2019-01-30), "StEER - 19 JANUARY 2019 TORNADOES IN THE SOUTHEASTERN US: FIELD ASSESSMENT TEAM EARLY ACCESS RECONNAISSANCE REPORT (EARR)", DesignSafe-CI [publisher], Dataset, doi:10.17603/ds2-eb6e-tr31 [DOI: https://doi.org/10.17603/ds2-eb6e-tr31]

Robertson, Ian; Esteban, Miguel; Stolle, Jacob; Takabatake, Tomoyuki; mulchandani, Harish; Kijewski-Correa, Tracy; Prevatt, David; Roueche, David; Mosalam, Khalid (2019-01-15), "StEER - PALU EARTHQUAKE AND TSUNAMI, SULAWESI, INDONESIA: FIELD ASSESSMENT TEAM 1 (FAT-1) EARLY ACCESS ASSESSMENT STRUCTURAL TEAM (P-VAST) REPORT" DesignSafe-CI [publisher], Dataset, doi:10.17603/ds2JD7T [DOI: https://doi.org/10.17603/DS2JD7T]

Robertson, Ian; Head, Monique; Roueche, David; Wibowo, Hartanto; Kijewski-Correa, Tracy; Mosalam, Khalid; Prevatt, David (2018-12-31), "StEER - SUNDA STRAIT TSUNAMI (INDONESIA): PRELIMINARY VIRTUAL ASSESSMENT TEAM (P-VAT) REPORT" DesignSafe-CI [publisher], Dataset, doi:10.17603/ds2Q98T [DOI: https://doi.org/10.17603/DS2Q98T]
PVRR: Preliminary Virtual Reconnaissance Report

Building Resilience through Reconnaissance

Mosalam, Khalid; Kijewski-Correa, Tracy; Hassan, Wael; Archbold, Jorge; Marshall, Justin; Mavroeidis, George; Muin, Sifat; mulchandani, Harish; Peng, Han; Pretell Ductram, Anthony; Renmin; Prevatt, David; Robertson, Ian; Roueche, David (2018-12-06), "STEER - EERI ALASKA EARTHQUAKE: PRELIMINARY VIRTUAL ASSESSMENT TEAM (P-VAT) JOINT REPORT" , DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2MQ38 [DOI: https://doi.org/10.17603/DS2MQ38]

Roueche, David; Cleary, John; Gurley, Kurtis; Marshall, Justin; Pinelli, Jean-Paul; Prevatt, David; Smith, Daniel; Alipour, Alice; Angeles, Karen; Davis, Brett; Gonzalez, Camila; Lenjani, Ali; mulchandani, Harish; Musetich, Matthew; Salman, Abdullahi; Kijewski-Correa, Tracy; Robertson, Ian; Mosalam, Khalid, (2018-10-25), "STEER - HURRICANE MICHAEL: FIELD ASSESSMENT TEAM 1 (FAT-1) EARLY ACCESS RECONNAISSANCE REPORT (EARR)" , DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2G41M [DOI: https://ezid.cdlib.org/id/doi:10.17603/DS2G41M]

Alipour, Alice; Aly, Aly Mousaad; Davis, Brett; Gutierrez Soto, Mariantonieta; Kijewski-Correa, Tracy; Lenjani, Ali; Lichty, Benjamin; Miner, Nathan; Roueche, David; Salman, Abdullahi; Smith, Daniel; Sutley, Elaina; Mosalam, Khalid; Prevatt, David; Robertson, Ian, (2018-10-19), "STEER - HURRICANE MICHAEL: PRELIMINARY VIRTUAL ASSESSMENT TEAM (P-VAT) REPORT" , DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2RH71 [DOI: https://ezid.cdlib.org/id/doi:10.17603/DS2RH71]

Barnes, Robert; Lytle, Blake; Rogers, Spencer; Pei, Weichiang; Kijewski-Correa, Tracy; Gonzalez, Camila; u, Fan; Musetich, Matthew; Peng, Han; Prevatt, David; Roueche, David; Salman,Abdullahi; Mosalam, Khalid; Robertson, Ian, (2018-09-25), "HURRICANE FLORENCE: FIELD ASSESSMENT TEAM 1 (FAT-1) EARLY ACCESS RECONNAISSANCE REPORT (EARR)”, DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2TT3G [DOI: https://ezid.cdlib.org/id/doi:10.17603/DS2TT3G]